Contents

3D Vision Notes | Point Clouds Processing 01 | Introduction

1. Introduction and Basic Algorithm

Classical Algorithms vs Deep Learning

- Object Classification Object Registration Object Detection
Classical Keypoint Detection
Keypoint Description
SVM
Nearest Neighbor Search
Iterative Closest Point(ICP)
Background Removal
Clustering
Classification
Deep Learning Data Collection
Data Labeling
Train a Network
Data Collection
Data Labeling
Train a Network
Data Collection
Data Labeling
Train a Network

Note Lists:

  1. Introduction and Basics Algorithms
  • PCA and Kernel PCA
  • Smoothing, Filtering and Downsampling
  1. Nearest Neighbor Problem
  • Binary Search Tree
  • KD-Tree
  • Octree
  1. Clustering
  • K-Means
  • Gaussian Mixture Model (GMM)
  • Expectation-Maximization (EM)
  • Spectral Clustering
  1. Model Fitting
  • Meanshift & dbscan
  • Robust Least Square
  • Hough Transform
  • RANSAC
  1. Deep Learning on Point Cloud
  • PointNet & PointNet++
  • GCN
  • Supplementary
  1. 3D Object Detection
  • RCNN, FastRCNN, FasterRCNN, SSD
  • VoxelNet, PointPillars
  • PointRCNN
  • Frustum PointNet, PointPainting
  1. 3D Feature Detection
  • harris 2d, 3d, 6d
  • ISS: Intrinsic Shape Signatures
  • USIP
  • SO-Net
  1. 3D Feature Description
  • PFH & FPFH
  • SHOT
  • 3D Match & Pe
  1. Registration (!!!!)
  • ICP:
  • NDT: Normal Distribution Transform
  • Registration by RANSAC with feature detection, description, matching

深度学习:简单却不太容易解释; 要理解传统方法