Contents

Statistical Learning Notes | Logistic Regression, Cost Function, Gradient Descent

1. Binary Classification Example

Recall: Logistic Regression is an Algorithm for Binary Classification

An image is store in the computer in three separate matrices

  • corresponding to the Red, Green, and Blue color channels of the image.
  • The three matrices have the same size as the image, for example, the resolution of the cat image is (64 pixels X 64 pixels), the three matrices (RGB) are 64 X 64 each.
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
import numpy as np
def image2vector(image):
    """
    Argument:
    image -- a numpy array of shape (length, height, depth)

    Returns:
    vector -- a vector of shape (length*height*depth, 1)
    """

    vector = image.reshape(image.shape[0]*image.shape[1]*image.shape[2],1)

    return vector

2. Sigmoid Function for LR

Given $X \in \R^{n_x}$, we want $\hat{y} = P(y=1|x), \hat{y} \in [0,1]$

  • Parameters: $w \in \R^{n_x}, b \in \R$
  • Let $z = w^T x + b$
  • Output:

$$\hat{y} = \sigma (z) = \frac{1}{1+e^z}$$

  • if z positive infinity: $\sigma (z) \approx \frac{1}{1+0} = 1$
  • if z negative infinity: $\sigma (z) \approx \frac{1}{1+\infty} = 0 $
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
def sigmoid(z):
    """
    Compute the sigmoid of z

    Arguments:
    z -- A scalar or numpy array of any size.

    Return:
    s -- sigmoid(z)
    """
    s = 1/(1+np.exp(-z))
    return s

3. Cost Function for Logistic Regression

Given m training data: {$(x^{(1)},y^{(1)}), \dots, (x^{(m)},y^{(m)})$}

Loss Function
$$L(\hat{y}, y) = - (y \log(\hat{y}) + (1-y) \log(1-\hat{y}))$$

  • if $y = 1$, $L(\hat{y}, y) = - \log(\hat{y})$, to make L as small as possible, let $\hat{y} \approx 1$
  • if $y = 0$, $L(\hat{y}, y) = - \log(1-\hat{y})$, to make L as small as possible, let $\hat{y} \approx 0$

Cost Function

  • Goal: Use Gradient Descent to optimize the _parameters w and b* to minimize the Cost Function: $$J(w,b)=\frac{1}{m}\sum^m_{i=1} L(\hat{y}^{(i)}, y^{(i)})$$ $$= - \frac{1}{m}\sum^m_{i=1} [y^{(i)}\log (\hat{y}^{(i)}) - (1-y^{(i)})\log (1-\hat{y}^{(i)})]$$
  • the cost function is a Convex Function that has a Global (Minimum) Optimum point

4. Gradient Descent

Start at the Initial Point (w, b) and take a step in the steepest downhill direction

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
def initialize_with_zeros(dim):
    """
    This function creates a vector of zeros of shape (dim, 1) for w and initializes b to 0.

    Argument:
    dim -- size of the w vector we want (or number of parameters in this case)

    Returns:
    w -- initialized vector of shape (dim, 1)
    b -- initialized scalar (corresponds to the bias)
    """

    w = np.zeros((dim,1))
    b = 0
    assert(w.shape == (dim, 1))
    assert(isinstance(b, float) or isinstance(b, int))
    return w, b

dim = 2
w, b = initialize_with_zeros(dim)
print ("w = " + str(w))
print ("b = " + str(b))
'''
w = [[0.]
 [0.]]
b = 0
'''

Forward and Backward Propagation

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
def propagate(w, b, X, Y):
    """
    Implement the cost function and its gradient for the propagation explained above

    Arguments:
    w -- weights, a numpy array of size (num_px * num_px * 3, 1)
    b -- bias, a scalar
    X -- data of size (num_px * num_px * 3, number of examples)
    Y -- true "label" vector (containing 0 if non-cat, 1 if cat) of size (1, number of examples)

    Return:
    cost -- negative log-likelihood cost for logistic regression
    dw -- gradient of the loss with respect to w, thus same shape as w
    db -- gradient of the loss with respect to b, thus same shape as b
    """

    m = X.shape[1]

    # FORWARD PROPAGATION (FROM X TO COST)
    A = sigmoid(np.dot(w.T,X) + b)              # compute activation
    cost = np.sum(((- np.log(A))*Y + (-np.log(1-A))*(1-Y)))/m  # compute cost
    # BACKWARD PROPAGATION (TO FIND GRAD)
    dw = (np.dot(X,(A-Y).T))/m
    db = (np.sum(A-Y))/m

    assert(dw.shape == w.shape)
    assert(db.dtype == float)
    cost = np.squeeze(cost)
    assert(cost.shape == ())

    grads = {"dw": dw,
             "db": db}

    return grads, cost

5. Optimization

Write down the optimization function. The goal is to learn $w$ and $b$ by minimizing the cost function $J$. For a parameter $\theta$, the update rule is $\theta = \theta - \alpha \text{ } d\theta$, where $\alpha$ is the learning rate.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
def optimize(w, b, X, Y, num_iterations, learning_rate, print_cost = False):
    """
    This function optimizes w and b by running a gradient descent algorithm

    Arguments:
    w -- weights, a numpy array of size (num_px * num_px * 3, 1)
    b -- bias, a scalar
    X -- data of shape (num_px * num_px * 3, number of examples)
    Y -- true "label" vector (containing 0 if non-cat, 1 if cat), of shape (1, number of examples)
    num_iterations -- number of iterations of the optimization loop
    learning_rate -- learning rate of the gradient descent update rule
    print_cost -- True to print the loss every 100 steps

    Returns:
    params -- dictionary containing the weights w and bias b
    grads -- dictionary containing the gradients of the weights and bias with respect to the cost function
    costs -- list of all the costs computed during the optimization, this will be used to plot the learning curve.

    Tips:
    You basically need to write down two steps and iterate through them:
        1) Calculate the cost and the gradient for the current parameters. Use propagate().
        2) Update the parameters using gradient descent rule for w and b.
    """

    costs = []

    for i in range(num_iterations):

        # Cost and gradient calculation
        grads, cost = propagate(w, b, X, Y)

        # Retrieve derivatives from grads
        dw = grads["dw"]
        db = grads["db"]

        # update rule
        w = w - (learning_rate*dw)
        b = b - (learning_rate*db)
        # Record the costs
        if i % 100 == 0:
            costs.append(cost)

        # Print the cost every 100 training iterations
        if print_cost and i % 100 == 0:
            print ("Cost after iteration %i: %f" %(i, cost))

    params = {"w": w,
              "b": b}

    grads = {"dw": dw,
             "db": db}

    return params, grads, costs

6. Predict

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
def predict(w, b, X):
    '''
    Predict whether the label is 0 or 1 using learned logistic regression parameters (w, b)

    Arguments:
    w -- weights, a numpy array of size (num_px * num_px * 3, 1)
    b -- bias, a scalar
    X -- data of size (num_px * num_px * 3, number of examples)

    Returns:
    Y_prediction -- a numpy array (vector) containing all predictions (0/1) for the examples in X
    '''

    m = X.shape[1]
    Y_prediction = np.zeros((1,m))
    w = w.reshape(X.shape[0], 1)

    # Compute vector "A" predicting the probabilities of a cat being present in the picture
    A = sigmoid(np.dot(w.T,X) + b)           # Dimentions = (1, m)

    Y_prediction = (A >= 0.5) * 1.0 # 1 if A >= 0.5, 0 otherwise

    assert(Y_prediction.shape == (1, m))

    return Y_prediction

7. Merge all functions into a Model

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
def model(X_train, Y_train, X_test, Y_test, num_iterations = 2000, learning_rate = 0.5, print_cost = False):
    """
    Builds the logistic regression model by calling the function you've implemented previously

    Arguments:
    X_train -- training set represented by a numpy array of shape (num_px * num_px * 3, m_train)
    Y_train -- training labels represented by a numpy array (vector) of shape (1, m_train)
    X_test -- test set represented by a numpy array of shape (num_px * num_px * 3, m_test)
    Y_test -- test labels represented by a numpy array (vector) of shape (1, m_test)
    num_iterations -- hyperparameter representing the number of iterations to optimize the parameters
    learning_rate -- hyperparameter representing the learning rate used in the update rule of optimize()
    print_cost -- Set to true to print the cost every 100 iterations

    Returns:
    d -- dictionary containing information about the model.
    """

    # initialize parameters with zeros (≈ 1 line of code)
    w, b = initialize_with_zeros(X_train.shape[0])

    # Gradient descent (≈ 1 line of code)
    parameters, grads, costs = optimize(w, b, X_train, Y_train, num_iterations, learning_rate, print_cost)

    # Retrieve parameters w and b from dictionary "parameters"
    w = parameters["w"]
    b = parameters["b"]

    # Predict test/train set examples
    Y_prediction_test = predict(w, b, X_test)
    Y_prediction_train = predict(w, b, X_train)

    # Print train/test Errors
    print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100))
    print("test accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100))


    d = {"costs": costs,
         "Y_prediction_test": Y_prediction_test,
         "Y_prediction_train" : Y_prediction_train,
         "w" : w,
         "b" : b,
         "learning_rate" : learning_rate,
         "num_iterations": num_iterations}

    return d